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Abstract This paper concerns the numerical behavior of the solution to a problem
including a linear mixed kinetic-diffusion model for surfactant adsorption at the air-
water interface. The existence and uniqueness of a weak solution is recalled. Then,
fully discrete approximations are obtained by using a finite element method and the
backward Euler scheme. Error estimates are stated from which, under adequate addi-
tional regularity conditions, the linear convergence of the algorithm is deduced. Finally,
several numerical simulations are presented in order to demonstrate the behavior of
the solution for commercially available surfactants.
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1 Introduction

Surfactant adsorption dynamics at the air-water interface has determinant applica-
tions in areas such chemistry, medicine, food processing and so on (see [1,2] and the
references therein). When a new air-water interface is formed in a surfactant solution,
the surfactant molecules tend to migrate to this interface changing its properties as, for
instance, reducing drastically its surface tension (see [1,2]). This problem is modeled
using the diffusion partial differential equation in one spatial dimension, coupled with
the corresponding adsorption-desorption model by means of a suitable boundary con-
dition at the interface. In this paper we address the research began in [4] concerning
a linear mixed kinetic-diffusion model, where the existence of a unique solution and
the theoretical numerical analysis were shown, and also in [3], where the diffusion-
controlled model for the so-called Henry isotherm was studied from the numerical
point of view. Here, we provide several numerical examples in order to demonstrate
the behavior of the solution.

The outline of this paper is as follows. In Sect. 2, we briefly describe the
mathematical model and we introduce the variational formulation of the problem, for
which an existence and uniqueness result is recalled. Fully discrete approximations
are introduced in Sect. 3 by using a finite element method and a hybrid combination
of the explicit and implicit Euler schemes for the spatial and time discretizations,
respectively. An error estimate result is stated from which the linear convergence is
deduced under suitable regularity assumptions. Finally, in Sect. 4 numerical exam-
ples are shown to demonstrate the behavior of the solution for commercially available
surfactants.

2 The model and its variational formulation

First, we introduce the so-called subsurface (see [1,2]), which is located a few molec-
ular diameters below the air-water interface, being the limit between the domain where
only diffusion takes place and the region in which only adsorption-desorption occurs.

Then, let x be the distance from the interface and denote by c(x, t) the concentration
of surfactant at point x ∈ [0, l] and time t ∈ [0, T ]. The boundary x = 0 of the spatial
interval corresponds to the location of the subsurface (see Fig. 1). Denoting by Γ (t)
the time-dependent surface concentration and taking into account the Fick’s law, we
have the following problem (see [4] and the references therein for details):

∂c

∂t
(x, t) − D

∂2c

∂x2 (x, t) = 0, x ∈ (0, l), t ≥ 0, (1)

D
∂c

∂x
(0, t) = dΓ

dt
(t), t ≥ 0, (2)

c(l, t) = cb, t ≥ 0, (3)

c(x, 0) = c0(x), x ∈ (0, l), (4)

Γ (0) = Γ0, (5)
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Subsurface
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Fig. 1 Air-water interface and location of the subsurface

where D denotes the diffusion coefficient and the positive constant cb is the bulk
concentration. Moreover, c0(x) is a function defined in [0, l] and being equal to cb on
x = l which represents an initial condition for the concentration. We point out that the
surface concentration, Γ , is, in fact, an unknown of the system and then an additional
condition must be given in order to complete the problem. In this work, we use a linear
kinetic expression modeling the mass transfer between the surface and subsurface at
low concentrations, leading to the following ordinary differential equation (see [1,6]):

d Γ

dt
(t) = ka

H c(0, t) − kd
H Γ (t), (6)

where ka
H and kd

H are the adsorption and desorption constants, respectively.
If we assume now that the solution to this ODE is regular enough, the previous

equation together with the initial condition (5) can be straightforwardly integrated and
boundary condition (2) reads

D
∂c

∂x
(0, t) = ka

H c(0, t) − φ(t, c(0, ·)), (7)

where

φ(t, ζ ) = kd
H Γ0 e−kd

H t + kd
H ka

H e−kd
H t

t∫

0

ekd
H τ ζ(τ )d τ. (8)

Thus, we are interested in the problem defined by equations (1), (3), (4) and
boundary condition (7). Moreover, for the sake of clarity in this paper, we assume
that cb equals zero and so a homogeneous boundary condition is imposed on the right
end of the spatial interval.

We turn now to obtain the variational formulation of problem (1), (3), (4) and (7).
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Let V be the Hilbert space

V = {v ∈ H1(0, l); v(l) = 0},
endowed with the inner product

((v,w)) =
l∫

0

∂v

∂x

∂w

∂x
dx,

and the associated norm ‖v‖V = ((v, v))1/2. We denote by γ0 : H1(0, l) → R the
trace operator on x = 0. Furthermore, we recall the inner product in H = L2(0, l)
given by

(v,w)H =
l∫

0

v(x) w(x)dx,

with associated norm ‖v‖H = (v, v)
1/2
H . Moreover, we consider the space

W2(0, T ; V ) = {v ∈ L2(0, T ; V ); v̇ ∈ L2(0, T ; V ′)},
where we denote the time derivative by a dot above.

Using the integration by parts formula, the weak formulation of problem (1), (3),
(4) and (7) is written as follows.

Problem P. For a given c0 ∈ H , find a function c ∈ W2(0, T ; V ) such that

〈ċ(t), v〉V ′×V + D ((c(t), v)) + ka
H γ0(c(t)) γ0(v) = φ(t, γ0(c)) γ0(v),

for a.e. t ∈ (0, T ), ∀v ∈ V, (9)

c(0) = c0. (10)

The existence and the uniqueness of solution to Problem P is stated in the next theorem.
Its proof is based on classical results for linear parabolic equations and fixed-point
techniques (see [4]).

Theorem 1 Let ka
H , kd

H and D be positive constants. If c0 ∈ H then there exists a
unique solution c ∈ W2(0, T ; V ) to Problem P.

3 Fully discrete approximations: numerical analysis

We introduce now a fully discrete approximation of problem (9), (10). First, we con-
sider the finite-dimensional space V h ⊂ V to approximate the variational space V
given by

V h = {vh ∈ C([0, l]) ; vh|[ai−1,ai ] ∈ P1([ai−1, ai ]), for i = 1, . . . , M,

vh(l) = 0}, (11)
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where the spatial discretization of the interval [0, l] is defined by 0 = a0 < a1 < . . .

< aM = l, h = l/M being the spatial discretization parameter. Moreover, P1([ai−1, ai ])
denotes the set of polynomials of degree less or equal to one in the interval [ai−1, ai ],
i = 1, . . . , M .

Secondly, let 0 = t0 < t1 < · · · < tN = T be a uniform partition of the time
interval [0, T ], with nodes tn = n k for n = 0, 1, . . . , N , and denote by k = T/N the
time step size. For a continuous function z(t), we use the notation zn = z(tn) and, for
the sequence {zn}N

n=0, we denote by δzn = (zn − zn−1)/k its corresponding divided
differences.

Therefore, using the backward Euler scheme, the fully discrete approximation of
Problem P is written in the following form.

Problem Phk . Find chk = {chk
n }N

n=0 ⊂ V h such that

chk
0 = ch

0 , (12)

and, for n = 1, . . . , N and for all vh ∈ V h ,

(δchk
n , vh)H + D ((chk

n , vh)) + ka
H γ0(c

hk
n ) γ0(v

h) = φhk
n−1 γ0(v

h), (13)

where ch
0 = πhc0 ∈ V h is an approximation of the initial condition c0, πh being the

standard finite element interpolation operator, and

φhk
n−1 = kd

H Γ0 e−kd
H tn + kd

H ka
H k

n−1∑
j=0

ekd
H (t j −tn)γ0(c

hk
j ). (14)

Under the assumptions of Theorem 1 and using Lax–Milgram theorem, we easily
deduce the existence of a unique discrete solution to Problem Phk .

In the sequel, we present some error estimates for the difference cn − chk
n assuming

the following additional regularity:

c ∈ C([0, T ]; V ) ∩ C1([0, T ]; H). (15)

Applying a discrete version of Gronwall’s inequality (see [5]), after some algebraic
manipulations (see [4] for details) we have the following result which states some a
priori error estimates on the approximate solutions.

Theorem 2 Under the assumptions of Theorem 1 and assuming that regularity con-
dition (15) holds, there exists a positive constant β > 0, independent of the discreti-
zation parameters h and k, such that the following error estimates are satisfied for all
{vh

n }N
n=1 ⊂ V h,
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max
0≤n≤N

‖cn − chk
n ‖2

H + k
N∑

j=0

[
D‖c j − chk

j ‖2
V + α|γ0(c j − chk

j )|2
]

≤ β
[
‖c0 − ch

0‖2 + max
1≤n≤N

{‖ċn − δcn‖2
H + ‖cn − vh

n ‖2
V + I 2

n }

+
N−1∑
j=1

1

k
‖c j − vh

j − (c j+1 − vh
j+1)‖2

H

]
, (16)

where δcn = (cn − cn−1)/k and the integration error In is given by

In = ka
H kd

H e−kd
H tn

∣∣∣
tn∫

0

ekd
H τ γ0(c(τ )) dτ −

n−1∑
j=0

k ekd
H t j γ0(c(t j ))

∣∣∣.

Estimates (16) are the basis for the convergence analysis. As an example, let us assume
further regularity conditions on the solution to the continuous problem:

c ∈ C([0, T ]; H2(0, l)), ċ ∈ L2(0, T ; V ), c̈ ∈ C([0, T ]; H). (17)

We now state the linear convergence of the algorithm under these additional regu-
larity conditions.

Corollary 1 Let the assumptions of Theorem 2 still hold. If we assume the additional
regularity conditions (17), then there exists a positive constant β > 0, independent of
h and k, such that

max
0≤n≤N

‖cn − chk
n ‖H ≤ β (h + k).

4 Numerical results

In this final section, we present some numerical simulations involving commercially
available surfactants in order to demonstrate the numerical behavior of the solution to
Problem P.

Remark 1 The numerical resolution of Problem Phk is done as follows. First, for
n = 1, 2, . . . , N and given chk

n−1 ∈ V h , the discrete concentration at time t = tn of
surfactant, chk

n , is then obtained from Eq. (13) solving the problem:

(chk
n , vh)H + D k ((chk

n , vh)) + ka
H k γ0(chk

n ) γ0(v
h)

= (chk
n−1, v

h)H + k φhk
n−1 γ0(v

h), ∀vh ∈ V h,

where value φhk
n−1 is given in (14). This leads to a linear system which is solved by

using classical Cholesky’s method. This numerical scheme was implemented on a
Core i5 2.53 Ghz PC using MATLAB, and a typical run (h = k = 0.01) took about
0.6 seconds of CPU time for a final time T = 5 s.
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4.1 Simulation of hexanol: dependence on the adsorption rate constant

As a first example, we consider a dilute solution of the commercial alcohol hexanol,
using the data from references [1] and [6]:

cb = 3.44 mol/m3, D = 7.16 × 10−10m2/s, l = 10−6 m,

T = 0.5 s, Γ0 = 0 mol/m2.

Moreover, the initial condition c0 is defined as c0(0) = 0 and c0(x) = cb for all
x ∈ (0, 10−6].

Using the discretization parameters h = 10−8 and k = 10−4 and the adsorption
and desorption rate constants, ka

H = 1.73 × 10−4 m/s and kd
H = 157 s−1, in Figs. 2

and 3 the evolution in time of the subsurface and surface concentrations are shown,
respectively, both obtained with this mixed kinetic model and also that modeling the
problem with the diffusion-controlled model for the classical Henry’s isotherm, where
the Henry equilibrium adsorption constant K H equals ka

H /kd
H . As it can be seen in
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Fig. 2 Evolution in time of the subsurface concentration with the mixed kinetic model (left) and that
obtained with the diffusion-controlled model for Henry’s isotherm (right), semi-log scale
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Fig. 3 Evolution in time of the surface concentration Γ (t) with the mixed kinetic model (left) and that
obtained with the diffusion-controlled model using Henry’s isotherm (right), semi-log scale
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Fig. 2 the adsorption mechanism of the mixed kinetic model is limiting the mass
transfer from the solution to the surface.

Next, we choose the adsorption and desorption rate constants, ka
H and kd

H as reported
in [6], leading to the following six cases:

– Case i: ka
H = 2.583 × 10−3 m/s and kd

H = 2348 s−1.
– Case ii: ka

H = 6.456 × 10−4 m/s and kd
H = 587 s−1.

– Case iii: ka
H = 1.73 × 10−4 m/s and kd

H = 157 s−1.
– Case iv: ka

H = 1.96 × 10−5 m/s and kd
H = 18 s−1.

– Case v: ka
H = 0 m/s and kd

H = 0 s−1.
– Case vi: diffusion-controlled model with Henry’s isotherm, K H = 1.1×10−6 m.

Our aim is to compare the surface tension σ given by

σ(t) = σ0 − n R T Γ (t),

for each of the above cases, where σ0 = 0.072 N/m denotes the surface tension of
pure water, T = 293.71 K is the temperature, R = 8.31 J/(K mol) represents the gas
constant and n is a constant which is equal to one for a non-ionic surfactant. Using
the discretization parameters h = 10−8 and k = 10−5 for cases ii–vi and k = 10−6

for case i, in Fig. 4 the evolution in time of the surface tension obtained for each of
the above six cases is represented (semi-log scale). We point out that these numerical
calculations are in good agreement with the experimental and theoretical values of the
surface tensions of the hexanol solution reported in Fig. 6 of [6] and Fig. 27 of [1]. As
it can be expected, the time needed to reach the stationary value increases meanwhile
the value of the adsorption rate constant ka

H decreases.
The evolution in time of the surface concentration is shown in Fig. 5 for the above

six cases using the same discretization parameters employed to obtain Fig. 4.
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Fig. 4 Surface tension graphs obtained for the six cases of adsorption and desorption constants, semi-log
scale
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Fig. 5 Evolution in time of the surface concentration obtained for the six cases of adsorption and desorption
constants, semi-log scale
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Fig. 6 Evolution in time of the subsurface concentration (left) and the surface concentration (right) for
heptanol, semi-log scale

4.2 Simulation of heptanol

As a second example, we consider now a dilute solution of the commercial alcohol
heptanol (see [6] for further details):

cb = 0.1 mol/m3, D = 6.5 × 10−10m2/s, ka
H = 7.04 × 10−4 m/s,

kd
H = 190.27 s−1, l = 10−6 m, T = 1 s, Γ0 = 0 mol/m2.

Moreover, the initial condition c0 is defined as c0(x) = cb for all x ∈ [0, 10−6].
Using the discretization parameters h = 10−8 and k = 10−4, the evolution in time

of the subsurface and the surface concentrations are shown in Fig. 6 (left-hand side
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Fig. 7 Evolution in time of the surface tension for several heptanol bulk concentrations, semi-log scale

and right-hand side, respectively). We note that the subsurface concentration evolves
to the constant bulk concentration cb in a fast way.

Finally, in Fig. 7 we plot the evolution in time of the surface tension for several
bulk concentrations (cb = 0.1 mol/m3, cb = 0.5 mol/m3 and cb = 0.9 mol/m3).

As it can be seen, the time needed to reach stationary values of the surface tension
depends both on the values for the adsorption rate constants (see Fig. 4) and on the
bulk concentration (see Fig. 7). Moreover, on increasing the bulk concentration also
increases the magnitude of the change of the surface tension, because more alcohol is
incorporated to the air-water interface.
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